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A numerical technique is presented for the analysis of nonsteady flow fields generated by accelerating flames in 
gaseous media. The problem is formulated in Eulerian coordinates and the solution is based on the extension of 
the floating shock-fitting technique to all the discontinuities and their interactions occurring in the flowfield. 
Besides shock waves, the discontinuities taken into account thus far consist of contact surfaces, deflagration, 
and detonation fronts. The governing partial differential equations are integrated by the use of an explicit 
second-order accurate, finite-difference scheme, while special algorithms are introduced for the treatment of 
segments of the flowfield where the influence zones of discontinuities overlap. Actual interactions between them 
are treated by the polar intersection method. The technique is applied to the case of a steady flame experiencing 
an abrupt increase in burning speed, leading either to the establishment of a new steady flame flow system or to 
further acceleration culminated by the transition to detonation. A demarcation line between the two regimes of 
solutions, depending on the value of the initial burning speed and the magnitude of its abrupt increase, is 
established, and the physical validity of this criterion is corroborated by experimental evidence. 

Introduction 
HE ability to analyze flowfields generated by accelerating 
flames recently became of particular importance as a 

result of the concern over danger inherent in explosive clouds 
which can be formed in the case of accidental fuel spills. 1 

Thus, the activity in this field of study became quite escalated 
as demonstrated, for example, by the significant number of 
papers presented at the last Combustion Symposium. 2-4 

Since detonation presents a much greater danger than a 
deflagration, the prominent problems in this field are con
cerned with the initiation of detonation and, in particular, the 
transition from deflagration to detonation. A numerical 
analysis of such a problem has been presented recently by 
Boni et a!. 5 Their computations were based on the use of a 
finite-difference technique employing an artificial viscosity to 
handle large gradients associated with discontinuities oc
curring in the flowfield. 

The potential for transition to detonation, under conditions 
modeling the unconfined character of an explosive cloud, has 
been explored experimentally by Dorge et a!. 6 The test gas, 
usually a stoichiometric propane-air mixture maintained in a 
large rectangular enclosure, was ignited at the center of the 
floor to form a hemispherical flame. At a certain distance 
from the center, a hemispherical screen was placed, so that the 
flame passing through it acquired an increase in turbulent 

Presented as Paper 79-0290 at the AIAA Aerospace Sciences 
Meeting, New Orleans, La., Jan. 15-17, 1979; submitted March 5, 
1979; revision received Aug. 14, 1979. Copyright © American In
stitute of Aeronautics and Astronautics, Inc., 1979. All rights 
reserved. Reprints of this article may be ordered from AlA A Special 
Publications, 1290 Avenue of the Americas, New York, N.Y. 10019. 
Order by article No. at top of page. Member price $2.00 each, non
member, $3.00 each. Remittance must accompany order. 

Index categories: Combustion Stability, Ignition and Detonation; 
Computational Methods; Shock Waves and Detonations. 

*Engineer. Member AIAA. 
-j'Professor, Mechanical Engineering. Member AIAA. 
:!.Professor, Mechanical Engineering. Fellow AIAA. 

intensity augmenting its burning speed. The observed change 
in flame velocity has been correlated with the Reynolds 
number based on the velocity of the undisturbed flame and 
the mesh size of the screen. With the use of oxygen enriched 
air, the flame could be accelerated in this manner to such an 
extent that transition to detonation was eventually attained. 

The objective of the work presented here is to reveal the 
gasdynamic properties of the nonsteady flowfields generated 
in such phenomena and thereby elucidate the conditions 
associated with the transition to detonation. Conventional 
numerical techniques exploiting the device of artificial 
viscosity, such as that used by Boni et a!., could not be used 
for this purpose since they smooth oU the discontinuities 
occurring in the flowfield and cannot, therefore, treat the 
sharp wave interactions that dominate the development of the 
process. 

The numerical method presented here is, on the contrary, 
particularly suitable for the analysis of nonsteady flowfields 
containing internal discontinuities that are in the course of 
mutual interactions, since it is capable of retaining the sharp 
character of their jump conditions. Our algorithm is, in ef
fect, an extension of the floating shock-fitting technique, 
developed by Moretti 7 and Salas 8 for the study of steady two
dimensional flowfields, to nonsteady one-dimensional flows. 

Principles of Analysis 
As revealed by extensive experimental evidence acquired 

over the last twenty years, 9- 11 flames, in the course of ac
celeration, become more compact so that the power density of 
energy release is increased, providing the extra drive required 
for this purpose. Therefore, in the analysis such flames must 
be treated as discontinuous deflagration fronts. Moreover, in 
the course of transition to detonation many wave interaction 
processes take place, generating a great number of contact 
surfaces which have been observed to retain their sharp 
character over a considerable amount of time. Thus the in
fluence of transport properties appears to be negligible in 
comparison to the gasdynamic effects of wave interactions. 
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Consequently, in the analysis presented here, the medium is 
assumed to be inviscid, while the sharp character of wave 
fronts and their interactions are carefully taken into account. 
The nonsteady flowfield under study is considered to be 
spatially one-dimensional but, within this constraint, the 
analysis is set to treat planar-, line-, and point-symmetrical 
cases. However, all the wave fronts are treated as locally 
planar. This inhibits the application of our technique to 
continuous flow fields involving large gradients in gasdynamic 
parameters, such as a decaying point- or line-symmetrical 
blast wave in the vicinity of the front, but makes it par
ticularly suitable for flowfields generated by piston action, 
such as that provided by the flame. 

Thus, the solution we seek consists of continuous segments 
of time-dependent essentially invisicd flowfields, bounded by 
discontinous wave fronts which are in the course of mutual 
interactions. In a finite-difference scheme, deflagrations 
prove to be particularly troublesome, since the large jump in 
density and particle velocity with which they are invariably 
associated leads to large oscillations whenever the initial state 
is not determined with sufficient precision. For this reason, 
the computational grid we use is allowed to move with the 
velocity of the deflagration so that its front always coincides 
with a grid point, thus eliminating completely the truncation 
error. 

According to these principles, the continuous portions of 
the flowfield being studied are governed by the Euler 
equations of motion. These are expressed as: 

ft +gx=k (1) 

where subscripts t and x denote partial differentials with 
respect to time and space, respectively, while 

; g= l 
upxJ 

[u 2 + (p/ p) ]pxt 

u[e+ (p/p)]pxJ 

k= 

In the preceding, p, p, and u have the usual meaning of 
pressure, density, and particle velocity, respectively 

1 p u2 

e=---+
"(-lp 2 

where 'Y = const, while 

j E dfnA / df.,x 

where A is the frontal area at a radius x from the center. 
Accordingly, j = 0, 1, or 2 for planar, cylindrical, or spherical 
geometry, respectively, of the flow field. 

In order to adopt the equations to a moving grid, the in
dependent variables are transformed so that 

!=f, x=x- wt (2) 

where w is the rate of the grid's displacement. 
The partial derivatives then become 

( ) 1 =( ),-[w+t(dw/dt)]( )" (3a) 

while 
( ) \ = ( ),, (3b) 

All the variables of the problem are, at the same time, 
normalized by the introduction of the following non
dimensional parameters: 

p pxi 
PE-; R=-. 

Pa PaX~ 

Wp Vz 
WE-" 

P !lz 
{/ 

where subscript a denotes the ambient conditions, and sub
script o marks the reference radius. 

Under such circumstances, the governing equations acquire 
the following form: 

(4) 

where 

while 

ij; Go 

u 0 -1 

F= (U'!R) +PX' I; Ko jPXi- 1 

I (VIR) (E+PXl) 0 

In the computations these equations are used to determine, 
at each time step, the three components of vector F. The value 
of Pis then determined from the definition of E, namely, 

The continuous segments governed by the preceding 
equations are bounded by discontinuities involving finite 
jump conditions which are evaluated by the use of the 
Hugoniot relations. For shock fronts, the latter are expressed 
in terms of a constant 'Y, while for deflagration, proper 
allowance is made to take into account the change of 'Y from 
'Yu for the unburned medium to 'Yb for the burned gas. 12 ·13 

The detonation is treated as a shock followed by a 
deflagration. 

Principles of Computation 
The differential equations are integrated by the use of the 

MacCormack technique, 14 following the routine adopted by 
Dwyer et a!. 15 This is an explicit, noncentered, second-order 
accurate, two-step, finite-difference scheme that consists of a 
predictor and a corrector step which, with reference to Eq. 
(4), have, respectively, the following form 

(5) 

(6) 

Within this scheme, the elementary gasdynamic discon
tinuities and their interactions were computed explicitly by 
means of a floating discontinuity technique developed 
especially for this purpose. The technique is capable of taking 
into account the jump conditions without employing any 
artificial viscosity either explicitly or implicitly. Its ap
plication is described here with respect to shocks, contact 
surfaces, and deflagrations, respectively. As already pointed 
out, detonations are considered to be shocks followed by 
deflagrations and, therefore, do not require a separate 
treatment. 

Shock Fitting 
The rudimentary aspects of a shock traversing a com

putational grid are depicted in Fig. 1. There are two 
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Fig. 1 Schematic diagram of shock traversing the computational 
grid: a) front propagating lo the right; b) front propagating to the left. 

possibilities: the shock can move to the right (case a) or to the 
left (case b). In the first case, a significant truncation error 
can occur in the predictor step of the MacCormack scheme; in 
the second, a similar error can arise in the corrector step. Both 
may lead to large instabilities. The difficulty is obviated by 
the use of a second-order approximation developed by Salas. 8 

In effect, this involves an interpolation between grid points 
-taken in the first case at time (n) and, in the second, at time 
(n + 1)-to take into account the exact position of the high
pressure state immediately behind the front. In Fig. 1 this is 
denoted by x located at an intermediate position s between 
gridpoints(i) and (i+ I). 

The Salas modification affects only the middle term of the 
MacCormack scheme, namely, that involving the difference 
between the H's. These are then replaced as follows: 8•16 

(7) 

where 

and 

(8) 

where 

For the low-pressure side, computational stability is at
tained by reversing the foward differences in the predictor and 
backward differences in the corrector step. 

A shock can traverse the computational grid in five dif
ferent ways. These are shown in Fig. 2. Thick solid lines 
represent shock trajectories, thin lines with arrows pointing 
upward or downward are mnemonics indicating the direction 
in which the MacCormack predictor or corrector is applied at 
the node into which the arrow is pointing. Straight arrowhead 
lines point out the nodes where the predicted and corrected 
values of gasdynamic parameters behind the shock are related 
by the Rankine-Hugoniot jump conditions to the state im
mediately ahead of the front. Predicted values of these 
parameters are determined on the basis of the initial shock 
strength, while their corrected values are based on the average 
of the initial and predicted strengths. 

· 1--t~ i/ r· · ~ L.L. 

0"\cn:==P . . J \~.L. 
'l" 'l-:)" . .L.L1\ .L. 

Fig. 2 Schematic diagrams of various ways in which a shock can 
traverse the computational grid. 

The sets of computational points involved in the Salas 
modified algorithm are identified by showing them enclosed 
in kidney-shaped boundaries. Those embodying three 
parameters at time (n), as in the first two cases, are involved 
in the predictor step of Eq. (5) with the modification specified 
by Eq. (7) to evaluate conditions for a single point at time 
(n + 1). Those embodying three parameters at time (n + 1), as 
in the fourth case, are involved in the corrector step of Eq. (6) 
with the modification specified by Eq. (8). 

It is of interest to note that the shock-fitting technique 
developed by Moretti, 7 utilizing the Rankine-Hugoniot 
relations and the information carried along the characteristics 
intersecting the shock on the high-pressure side, showed no 
advantage over the floating shock fitting. In fact, Salas 8 

pointed out that the determination of the origin of the 
characteristic merging with the shock may become extremely 
difficult in the vicinity of other discontinuities. 

Deflagration Fitting 
As one of the principles of our analysis, the computational 

grid is made to move with the velocity of the deflagration so 
that its front always coincides with a node. Thus, the fitting of 
the deflagration as it traverses the computational grid is 
straightforward and unambiguous. There is only one way in 
which this can occur, as illustrated in Fig. 3. The trajectory of 
deflagration is represented there as a thick dashed line. Nodes 
(i) and (i + 1) coincide in space, but in computations they 
represent states immediately adjacent to the front on its two 
sides. Their parameters are related by the jump conditions 
across the deflagration. 

The fitting of the deflagration is accomplished by com
bining the jump relations across it in the forward and 
backward direction with the MacCormack predictor and 
corrector steps, as indicated by the arrowheads in Fig. 3. 

When the propagation speed of the deflagration is below 
the Chapman-Jouguet value, conditions behind it (node ion 
side b in Fig. 3) can influence those ahead (node i + 1 on side 
u). To make matters worse, the burning law prescribing the 
deflagration speed, sll, is usually expressed so that jump 
relations for each gasdynamic parameter cannot be expressed 
in a closed algebraic form. The evaluation of these relations 
requires, in this case, the use of an iterative procedure in
volving, besides the burning law, the mass, momentum, and 
the Hugoniot equations. 
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Fig. 3 Schematic diagram 
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:Fig. 4 Schematic diagram of a contact surface traversing the 
computational grid. 

When the deflagration acquires the Chapman-Jouguet 
velocity, conditions behind it cannot influence those ahead 
and the jump relations for each parameter can be expressed in 
a closed algebraic form. The fitting procedure is then 
significantly simpler. 

Contact Surface Fitting 
Contact surfaces are formed by wave interactions. Their 

existence is intimately related to the dynamic compatibility 
condition governing the interaction process: the demand for 
the establishment of a regime of uniform pressure and particle 
velocity immediately behind two adjacent wave systems~a 
condition that, in general, gives rise to two regimes of dif
ferent density and velocity of sound, separated by the contact 
surface. Since the difference between these parameters oc
curring across the surface can be quite large, failure to 
properly take them into account in a finite-difference scheme 
may lead to large oscillations. 

For this reason, contact surfaces are treated with particular 
care. The computational technique we employ for this pur
pose utilizes the solution to the Riemann problem~the 
evaluation of a steady wave system associated with different 
gasdynamic conditions existing at two adjacent grid points. 
This is accomplished by the use of a rapidly converging 
iteration algorithm devised by Chorin. 17 

Rudimentary properties of a contact surface traversing a 
computational grid are displayed in Fig. 4, while all the 
possible ways in which this process can take place are 
presented in Fig. 5. On these diagrams the trajectory of the 
contact surface is depicted by a dashed line, the crosses mark 
the states immediately ahead and behind. The four thin lines 
in the immediate vicinity of the trajectory indicate exactly 
how the solution to the Riemann problem is applied. It is 
based on the values of the parameters at states 1 and 2, that is, 
at nodes (i + 1) and (i), and provide data for states 3 and 4 at 
the two intermediate points marked by crosses. These are then 
utilized in the Salas-modified algorithms, as indicated in Fig. 
5, where the computational points involved in them are shown 
enclosed in boundaries of the same shape and corresponding 
meaning as those in Fig. 2. 

It should be noted that the Salas algorithm permitted the 
predictor and corrector schemes to bypass the discontinuity in 
all the cases except for the last one. However, here it turned 
out that ascribing the values of parameters at state 3 to the 
closest node matched well with the MacCormack corrector 
and did not cause any problem. 

Multidisconthmity Fitting 
In Figs. 2, 3, and 5 all of the grid points connected by lines 

with arrowheads are involved in the fitting procedure for the 
single discontinuities they display. These grid points in effect 
constitute their zones of influence. If there are two or more 
discontinuities whose zones of influence intersect, the fitting 

Fig. 5 Schematic diagrams of various ways in which a contact 
surface can traverse the computational grid. 

procedure involves iterations across the full extent of these 
zones. This requires special handling~a task which is ac
complished by the use of appropriate subroutines. For this 
purpose, we developed algorithms to treat a number of double 
as well as multiple discontinuity systems. 

The set for double discontinuity systems includes the 
following cases: 1) shock-shock, 2) shock-deflagration, 3) 
shock-contact surface, and 4) deflagration-contact surface. 
The latter three involve two subroutines to cover the different 
situations incurred depending on the side from which one 
discontinuity encounters the other. 

The set of triple discontinuity systems consists of: l) shock
contact surface-shock; 2) shock-contact surface-deflagration, 
and 3) contact surface-deflagration-shock. Moreover, we had 
to include a subroutine for a case involving four discon
tinuities; namely, 4) shock-contact surface-deflagration
shock. 

The subroutines for multidiscontinuity systems are made 
out of those for double discontinuity systems by including 
proper procedures for matching the parameters at grid points 
shared by their zones of influence. 

Interactions 
When the trajectories of discontinuities within intersecting 

influence zones are converging, they eventually interact with 
each other. In conformity with the major assumption of 
negligible viscous effects we adopted, such interactions are 
considered to occur instantaneously. Moreover, the par
ticipating discontinuities are treated as locally planar. 
Consequently, the solution of an interaction process is ob
tained by invoking the principle of the dynamic compatibility 
condition according to which the resulting wave system can 
create only a regime of uniform pressure and particle velocity. 
As already pointed out, it is this condition that gives rise to a 
contact surface. 

The computations are based on the concept of wave 
polar~the locus of all possible end states behind a given 
discontinuity in the plane of pressure and particle velocity. In 
order to satisfy the dynamic compatibility condition, wave 
polars for all the discontinuities participating in an interaction 
process must form a closed contour. 12,1s 

The interactions are treated accordingly by appropriate 
subroutines. These include: 1) generation of shocks by a 
deflagration undergoing a finite increment in propagation 
speed, 2) shock merging with a deflagration, 3) shock merging 
with a shock, 4) shock colliding with a shock, 5) shock 
colliding with a contact surface across which the velocity of 
sound increases, 6) shock colliding with a contact surface 
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across which the velocity of sound decreases, and 7) 
deflagration colliding with a contact surface. 

Methodology of Application 
The procedure we adopted for computation follows. First, 

the time-step is evaluated by the Courant-Friedrichs-Lewy 
stability condition, assuring that the numerical domain of 
dependence at every point in the flowfield includes that of the 
set of hyperbolic partial differential equations governing the 
solution. Gasdynamic parameters for all the grid points of the 
flowfield at the next time interval are then computed by 
applying the MacCormack predictor-corrector scheme as if 
there were no discontinuities involved in the problem. The 
discontinuities present in the flowfield are then located and 
their type identified. Thereupon, by the use of appropriate 
subroutines employing the floating fitting technique, the 
motion of the discontinuities and the flowfields around them 
are determined. 

This is continued until the influence zones of the discon
tinuities start to intersect. At that time a check is made of the 
adequacy of separation from other discontinuities that may be 
present in the flowfield. If this test fails, an additional check is 
made to find out whether one has to treat a triple or a 
quadruple discontinuity system. Having established the type 
of multiple discontinuity system encountered, the proper 
subroutine is invoked and the computations are continued 
until the trajectories of the discontinuities tend to interact 
within the next time interval. 

Thereupon, the interaction is computed by the appropriate 
subroutine using the wave polar method. In the course of 
interactions taking place in the burned medium, the strength 
of shock waves and contact surfaces is checked. Shocks whose 
Mach number is less than 1.001 and contact surfaces across 
which the density changes by less than 20Jo are discarded. 

Numerical Example 
The numerical example illustrating the application of our 

technique concerns an accelerating flame in a typical 
hydrocarbon-air mixture close to stoichiometric composition. 
Its thermodynamic properties are expressed as follows: 

Specific volume ratio at an initial pressure: 
Specific heat ratio of unburned medium: 
Specific heat ratio of burned gases: 
Ambient pressure: 
Velocity of sound at ambient conditions: 

Vp""7 
"( 11 = 1.3 
"fb=l.2 
Pa=latm 
aa =331 m/s 

The flame burning speed is expressed in terms of a law 
based on ample experimental evidence 19•23 , namely, 

where subscript o denotes the initial flame speed, and sub
scripts a and u refer, respectively, to conditions of the am
bient atmosphere into which the flame propagates initially 
and to those immediately ahead of its front. 

Initial conditions for the computations are provided by the 
solution of the pressure wave generated by a flame 
propagating with constant burning speed, 50 • 13 

When the flame is at a radius X= 1, its speed is suddenly 
increased by a finite increment !'J.S. The ensuing development 
of the process is determined using our computational 
technique. 

A time-space wave diagram of the solution is presented in 
Fig. 6. Here we had S0 =9.6 mls, and !'J.S= 14.6 m/s, while 
the flow was considered to be plane symmetrical () = 0). A 
solution obtained under similar circumstances for the same 
initial flame speed but with !'J.S = 19.0 m/s is displayed in Fig. 
7. On both diagrams, dashed thick lines represent the 
trajectories of deflagrations, solid lines refer to shocks, the 
thick solid line corresponds to detonation, and the thin 
broken lines indicate the particle paths. 

Fig. 6 Wave diagram of stable solution obtained in the case of 
subcritical burning speed increment. 
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Fig. 7 Wave diagram of unstable solution obtained in the case of 
supercritical burning speed increment. 

In the first case, the imploding shock, generated when the 
flame speed was suddenly increased at x:o:x

0
, was reduced to 

a sound wave after eight reflections from the center and in
teractions with the deflagration. In the meantime, the 
propagation speed of the deflagration increased to 37.2 m/s, 
while the Mach number of the shock at the front of the 
pressure wave was augmented from 1.1 to 1.4. The process 
took about 240 X 0 ms while the deflagration traveled a 
distance of 53 X 0 m, where X 0 is expressed in meters. 
Thereupon the whole wave system settled to a steady state 
corresponding to a self-similar solution obtained for the final 
propagation speed of the deflagration. 

In the second case, however, as demonstrated in Fig. 7, the 
process escalated to detonation propagating finally at a speed 
of 2250 m/s. Its onset occurred at a radius of 20.3 x

0 
m and 

the time of 76 X 0 ms. Associated with this was the generation 
of a retonation wave traveling at a speed of 1250 m/s, 
corresponding to a local Mach number of 1.29, into the 
burned medium. 

Details of the wave interaction processes associated with the 
onset of the detonation and retonation waves are shown in 
Fig. 8. This is, in effect, an enlargement of a part of the 
solution delineated by a small rectangle on Fig. 7. Added here 
for clarity of exposition are the characteristics. As it appears 
here, the onset of detonation is also associated with the 
formation of a centered rarefaction wave. Its front edge is at 
the Chapman-Jouguet state propagating with the detonation 
front, while its trailing edge is identified on the diagram by a 
chain-double-dotted line. 
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Fig. 8 Details of solution presented in Fig. 7 depicting the onset of 
detonation. 
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Fig. 9 Pressure space profiles at various instants obtained with the 
solution presented by Fig. 7. 

The evolution of pressure profiles corresponding to the 
solution presented in Figs. 7 and 8 is displayed in Fig. 9. For 
early times, they are presented in a larger scale on the left side; 
for later times, they are in a smaller scale on the right. The 
earliest is that for T= 4.5 showing the pressure distribution 
prior to the increment in the burning speed of the flame. The 
pressure profiles from then on until T= 15 demonstrate the 
remarkable ability of our technique in tracing sharp jumps 
associated with shocks without exhibiting any diffusional 
effect or any computational instabilities. The profile at 
T= 22.3 exhibits the effects of the centered rarefaction wave 
generated at the onset of detonation. Soon thereafter, at 
T=25, the pressure profile acquires the familiar shape of a 
self-similar blast wave headed by a Chapman-Jouguet 
detonation. 

Thus, there are two possibilities: a steady solution 
culminated by a constant velocity flame driving a pressure 
wave or an unsteady solution associated with transition to 
detonation. The distribution between the two is governed 
solely by the value of the initial flame speed and the flame 
speed increment. The demarcation line between the two 
regimes of these parameters is presented in Fig. 10. For initial 
conditions corresponding to a point below the line, stable 
solution, like that of Fig. 8, is obtained; for points above the 
line, the solutions are unstable, as exemplified by Fig. 7. 

For the stable case, similar solutions as that of Fig. 6 were 
obtained by our Cloud Code 24 -a Lagrangian computational 

0 

0 10 20 30 40 50 S-m;s 

Fig. 10 Regimes of initial conditions for stable and unstable 
solutions. 

scheme for blast waves employing the von Neumann
Richtmyer artificial viscosity with Wilkins' modification. 
When the unstable conditions associated with transition to 
detonation were approached, however, the computations 
became excessively unstable. This feature manifested itself so 
distinctly that it was actually exploited to check the demar
cation line of Fig. 10. With the use of the.Cloud Code, such 
lines were determined for spherical as well as planar 
flowfields. The difference between them turned out to be so 
small that the line presented in Fig. 10 could be considered to 
be valid irrespectively of the geometry of the flowfield. 

Noted on the diagram are a number of specific points 
marked by crosses. That indicated by S corresponds to the 
solution of Fig. 6; the point denoted by U specifies initial 
conditions for the solution presented in Figs. 7-9. Points 
indicated by W refer to experimental results obtained by 
Dorge eta!. 6 with the use of acetylene-air mixtures. Subscript 
S denotes cases when the flame, after passing the screen 
barrier, settled to a new steady propagation velocity. Sub
script U refers to the unstable case associated with transition 
to detonation, which was observed when air was enriched with 
oxygen. The numerals in the subscripts indicate the number of 
turbulence-generating screens used in the experiment. As it 
appears, the increase in flame-burning speed could be 
practically doubled by the use of three screens instead of one. 
However, the addition of oxygen to the air was evidently so 
effective in augmenting the flame speed increment that one 
screen was, in this case, quite sufficient. 

Conclusions 
Presented herein is a numerical technique capable of 

treating sharply all the discontinuous wave fronts and their 
interactions occurring in a nonsteady flowfield, such as that 
generated by an accelerating flame in the course of transition 
to detonation. The results obtained by its use are devoid of the 
effects of numerical diffusion and are thus instrumental in 
revealing the details of the gasdynamic phenomena governing 
the mechanism of the development of detonation. 

In the example used to illustrate the application of the 
technique~a constant velocity flame undergoing a sudden 
increase in its burning speed-a line of demarcation has been 
established between the regime of stable solutions whose final 
state is that of a constant velocity flame driving a self-similar 
blast wave, and that of unstable solutions characterized by the 
transition to detonation. The physical significance of this 
concept, as well as the actual position of the demarcatic.1line 
on the plane of the initial flame speed and its incremen:, have 
been corroborated by experimental evidence. One should note 
in this connection that the burning speed and its increment 
express in effect all the chemical kinetic and transport 
properties of the medium that play an essential role in the 
transition to detonation. 
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The example has a weak point: the law adopted to describe 
the dependence of the flame-burning speed on the conditions 
immediately ahead of its front is too rudimentary. The flame 
speed has been expressed as a function of only the ther
modynamic state, while, in reality, one would expect a 
significant dependence on the local scale and intensity of 
turbulence. Since in a given flow system both are functions of 
the freestream velocity, one would have S

11 
= S (p, T, u 

11
) while 

the form used in the example is restricted to S
11 
= S (p, T). 

In this respect, the following should be noted: 
1) The computational technique we present is capable of 

handling any law governing the flame-burning speed. 
2) We have not been able to find specific information in the 

literature on the dependence of propagating flames on the 
turbulence in the unburned medium. 

3) As a consequence of the restriction imposed by con
tinuity, the particle velocity ahead of the flame is de facto 
accounted in its burning speed. If, for example, ub = 0 then 
U11 = (vF -l)S11 • Since in a nonsteady flow field, local particle 
velocity is functionally related to pressure and temperature, 
one is thus left with S 11 = S (p, T), as actually used in our 
calculations. 

4) The flame-burning speed governs the flow only at the 
initial stages of flame acceleration. In the case of transition to 
detonation, which has been of primary interest in the 
development of our technique, the deflagration acquires quite 
rapidly the Chapman- Jouguet condition, whereupon the 
process becomes independent of the flame speed law. 

5) In accordance with the preceding, the results we ob
tained are in satisfactory agreement with experimental ob
servations. 
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